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ABSTRACT: This paper is devoted to the formation of a
spherulitic pattern in polymers that are spatially confined.
The nucleation at sample boundaries influences the spheru-
litic structure and accelerates the local conversion of melt
into spherulites. A model of the spherulitic pattern forma-
tion in narrow strips of polymer based on the probability
theory was developed to account for the effect of spherulite
nucleation at sample borders. The model allows us to pre-
dict the rates of formation of the interspherulitic boundaries
and also the distributions of distances from spherulite cen-
ters to the boundaries for an isothermal as well as a noniso-

thermal crystallization. The final length of interspherulitic
lines and the final number of triple points between spheru-
lites can also be calculated. The predictions of the model
were verified by computer simulation, which reproduces
spherulitic patterns observed experimentally in strips of thin
films. © 2005 Wiley Periodicals, Inc. ] Appl Polym Sci 97:
2319-2329, 2005
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INTRODUCTION

The theory describing a development of the spheru-
litic structure deals primarily with the conversion of a
melt into spherulites. While initial formulations by
Avrami and Evans'? concerned isothermal crystalli-
zation in an infinite body, later the theory was devel-
oped to describe processes in more complex con-
ditions: nonisothermal conditions [e.g., Refs. 3, 4],
volume confinement,” " and the presence of reinforc-
ing fibers,'* including the effects of transcrystallinity
resulting from intense spherulitic nucleation at sample
borders and on fibers.

While the conversion of melt into spherulites is of
great interest, a spherulitic pattern is also of impor-
tance, since it influences properties of semicrystalline
polymeric materials. Interspherulitic boundaries and
multiple boundary points, which are weak spots of
structure, affect the ultimate mechanical properties
and other properties, e.g., gas sorption phenomena
[e.g., Refs. 13-15].

In an infinite body, after time ¢, elapsed from the
first nucleation event, the conversion degree is ex-
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pressed by the classic formula: 1 — exp[— E.(t)],
where the second component equals the probability
that arbitrarily chosen sample point remains at time ¢
outside of any spherulite. E is determined by the time
dependencies of a nucleation rate, F(f), and a growth
rate, G(t), of spherulites [e.g., Refs. 1, 4]:

E.(t) = quj P(T)[f G(s)ds]" dr (1)
0

T

where k and 7 equal 1 and 2 in a two-dimensional case
and 4/3 and 3 in a three-dimensional case, respec-
tively.

When a limited polymer portion in the form of a
plate or a strip of film is considered, the probability
that a certain point remains unoccluded depends on
distances from both polymer borders; the lack of
spherulites beyond the material borders slows down
the conversion of the melt but an additional spheru-
litic nucleation at polymer borders accelerates the con-
version. To describe the kinetics of the conversion in
this case it is necessary to subtract and add the appro-
priate components to the right side of Eq. (1).57'°

The efforts to describe mathematically the forma-
tion of interspherulitic borders were limited initially
to crystallization far from the material limits.'®™"
They were based on considerations of the probability
of nucleation event occurrence in space and in time
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resulting, in the course of growth, in contacts of re-
spective numbers of crystallizing fronts. Further de-
velopment of this approach enabled us to account for
the effect of material borders in development of the
interspherulitic boundaries and of the final spherulitic
pattern in narrow strips of polymer films.** The re-
gions adjacent to the polymer borders differ consider-
ably from the polymer interior; the effect is significant
within a distance comparable with the average
spherulite size. The decrease of the film width influ-
ences the spherulitic structure and leads to a dimin-
ished amount of interspherulitic boundaries. The pro-
cess of formation of triple points and especially of
interspherulitic boundary lines is different in narrow
strips of films than in films of infinite width. This is
because some interspherulitic lines are formed at large
distances from spherulite centers at a late stage of
crystallization.

In Ref. 20 the spherulitic nucleation at sample edges
was not considered. In real systems such nucleation is
a frequent phenomenon; very intense nucleation at
sample borders leads to transcrystallinity, reflected
both in the overall crystallization kinetics and in the
spherulitic pattern. Similar effects are frequently ob-
served in fiber-reinforced composites, where intense
spherulite nucleation on fiber surfaces is caused by
mechanical stress at the interface between a fiber and
a supercooled polymer melt and leads to a structure
that is indistinguishable from a trancrystalline mor-
phology.*!

A computer simulation was frequently employed to
verify theoretical predictions concerning the spheru-
litic crystallization and also to visualize emerging
spherulitic patterns.®®10118-202223 The computer
modeling was also a valuable tool allowing us to
predict overall crystallization kinetics in cases where
mathematical description was insufficient, like in the
cases of thin films and bulk of fiber-reinforced ther-
moplastics.**™® The crystallization kinetics and
spherulitic morphology are controlled by a number of
factors: bulk nucleation density, nucleation density on
fiber surfaces, fiber volume fraction, fiber diameter,
and spherulitic growth rate. Different effects of fiber
presence on crystallization observed experimentally
are explained by those dependencies.””*® The com-
puter simulation was also used to determine the nu-
cleation density on fiber surfaces in fiber-reinforced
composites based on experimental crystallization
data.”® However, the computer simulation of spheru-
litic crystallization has not been used until now for
quantitative description of interspherulitic boundaries
in a polymer portion limited by borders that nucleate
spherulites.

This paper is devoted to the problem of the influ-
ence of spherulite nucleation at sample borders on the
formation and final form of the spherulite pattern. The
aim of the work was to develop further the probabi-
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listic model to enable the analytical description of the
formation of interspherulitic boundaries in the pres-
ence of spatial borders when spherulite nucleation
occurs at those borders. Analytical equations derived
in the paper allow the quantification of the effect of the
spherulite nucleation on emerging spherulitic pat-
terns, which was not possible thus far. Various sample
widths and spherulite nucleation intensities at sample
borders are considered.

Computer simulation of spherulitic structures was
also conducted as an independent way of obtaining
the data describing the interspherulitic boundaries as
a function of the polymer film width and to verify
predictions of the mathematical model. The computer-
simulated samples are visualized and compared with
experimentally crystallized spherulite patterns.

So far we have concentrated our efforts on 2D crys-
tallization, that is, on crystallization in thin films. Such
geometry allows us to verify the model by comparison
with polymer morphologies studied directly by light
microscopy and generated by computer simulation.

However, further development of the presented ap-
proach will allow us to deal with bulk crystallization
as well, including cylindrical morphologies in fiber-
reinforced composites. The confined two-dimensional
portions of a polymer, as described in this paper, are
already representative for two-dimensional fiber-rein-
forced composites.

PROBABILISTIC MODEL

The application of the probability theory to the char-
acterization of the spherulitic pattern development
during the isothermal as well as the nonisothermal
crystallization in thin films having infinite and finite
width is outlined in Refs. 16-20. During two-dimen-
sional spherulitic crystallization a boundary between
two neighboring spherulites has the form of a line,
while three spherulites come to contact at a point. The
probability of the formation of a contact point among
four spherulites on a plane can be neglected.'” In the
case of instantaneous nucleation the probability of a
point to be included in a boundary is only constrained
by geometric factors. Let us consider an arbitrarily
chosen point P in a strip of width 2k (Fig. 1) located at
distances s; and s, from the sample borders. The
boundary between two spherulites passes through
point P on the condition that distances, r, from both
spherulite centers to point P are equal with the accu-
racy of an infinitely small dr. The prerequisite is that
spherulites must be nucleated inside a fictitious ring of
radius r and width dr. For the spherulites nucleated
inside the sample this means that they must be nucle-
ated within the area elements rdrd¢, and rdrde,.?° The
ranges of angles ¢; and ¢, depend on the relation
between r and distances s; and s, since the considered
ring can be truncated either on one or on both sides by
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Figure1 Scheme of fictitious ring of radius r and width dr
around point P in a narrow strip of film.

the sample borders, as shown in Figure 1. The parts of
the ring confined by the sample borders are denoted in
Figure 1 as O for r < s,, O; and O, for r > s,.

The spherulites nucleated at border participate in
the formation of a boundary at the considered point P
if the distance from point P to the border is smaller
than r. Figure 1 shows schematically three possible
situations when the boundary can be formed at point
P: (1) by spherulites nucleated inside the sample, (2)
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by spherulites nucleated inside the sample and by
spherulites nucleated at one edge, and (3) by spheru-
lites nucleated inside the sample and at both borders
of the sample. To form a boundary at point P, at
distance r from spherulite centers, the spherulites
must be nucleated at sections of the borders confined
within a ring having a radius r and width dr: these
positions are marked in Figure 1 by A, B, C, and D.
The length of those sections on the respective borders
equals

dL, = r[r* — s3] "2 dr (2a)

dL, = r[r? — s3] Y2dr (2b)

For instantaneous nucleation the probability that n
spherulites are nucleated in a certain area d4S; is ex-
pressed by the Poisson formula: exp(—E;) (E;)"/n!,
where the expectancy E; is the product of dS,and the
nucleation density. The probability, g,, of two spheru-
lites to be nucleated, the first in dS; and the second in
dS,, equals exp(—E, — E,) EE,, where E, and E, are
the products of 45, and dS, and the respective nucle-
ation densities. The second condition for the boundary
to be formed at point P must be fulfilled: no other than
the two considered spherulites can be nucleated inside
the circle of radius r around point P, that is, neither
inside the sample nor at the sample edges. The prob-
ability that no other nucleation event occurs inside the
circle, qo, equals exp[-E + E; + E,] with E given by
the formula’

E = D[#wr? — W(r,s;) — W(r,s,)]
+ DJY(r,s;) + Y(r,8,)] (3a)

for r<s: W(r,s) = 0 and Y(r,s) = 0 (3b)
for r>s:

W(r,s) = r? arctan [(r?/s? — 1)!/7]
—s(r? — s?»)2  (3b)

and Y(r,s) = 2(r* — s%)"/? (3¢)

Thus, the probability, P,, that the boundary line
between the respective spherulites passes through
point P, equal to a product of g, and g, is expressed by
the formula

PZ(r151/SZ) = eXp[ - E(rlsl/SZ)]ElEZ (4)

If a boundary line between spherulites nucleated
inside the sample is considered, the product E.E,
equals (D rdr)*de,de,. For the boundary formed be-
tween a spherulite nucleated inside the sample and a
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Figure 2  Schematic location of spherulite centers of
around the boundary point P in a film.

spherulite nucleated at the sample border, the respec-
tive expressions are either Drdrde;DdL, or
Drdrde,DdL, where D, denotes the nucleation den-
sity on the sample borders. Finally, for the boundary
between spherulites nucleated at the borders the prod-
uct E,E, equals (D dL,)?, (DL,)?, or D,*dL,dL,. Recal-
culation of the probability P, to the probability that
point P is included in a boundary element of length dI
requires the multiplication of P, by the factor 2sin( ¢ /
2)/dr,*® where ¢ is the difference in angular positions
of the respective spherulite centers around point P, as
schematically shown in Figure 2.

A triple point, at intersection of boundary lines, is
formed at P at a distance r from three spherulite
centers on the following condition: these three spheru-
lites must be nucleated inside the ring of radius r and
of width dr as shown in Figure 1. In addition, no other
spherulite can be nucleated inside the circle of radius
r around point P. The probability, P;, that the triple
boundary point is formed at a distance r from three
spherulite centers is calculated in a similar way as for
the boundary between two spherulites:
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Ps(1,51,52) = exp[ — E(r,s1,5,)]E; E; E; (5)

Similarly as for boundaries between two spheru-
lites, E; i = 1,2,3, can be expressed in the form of
Drdrde, Drdrde,, DL, and DL,. There is one im-
portant difference with respect to the formation of
interspherulitic lines : the triple boundary points can-
not be formed by spherulites nucleated instanta-
neously at the same sample border, since boundary
lines between those spherulites are parallel and never
cross. The recalculation of the probability P; to the
number of triple points requires multiplication of P
by the factor of 4 sin( ¢ /2)sin( 6 /2)sin( y /2)/dr?*
where v = 27 — ¢ — 6, ¢ and 6 are differences in
angular positions of the respective spherulite centers
around point P, as shown in Figure 2.

While for certain 7, s;, and s, the positions of spheru-
lites nuclei at the sample edges are fixed, inside the
sample the centers of spherulites can be located in two
ranges of angle: (1) from « to 7 — B and (2) from 7 +
B to 2m — «a (Fig. 1), where a and B depend on the
distances 7, s;, and s, @« = 0 for v < 5y, and «
= arctan{[(r/s,)* — 1]'/?} for r > s, B = 0 for r < s,,
and B = arctan{[(r/s,)*> — 1]'/?} for r > s,. The inte-
gration over the appropriate ranges of angles allows
us to calculate the length of boundary lines and the
number of triple points per unit surface area of the
sample at distances r from spherulite centers and at
distances s; and s, from the sample borders. All pos-
sible combinations of positions of spherulite centers
must be considered, and for n centers nucleated inside
the strip within the same angle range, the result of
integration should be divided by n! to avoid multiple
counting of the same events. The final expressions for
the boundary length, F,, and the number of triple
points, F; (formed at distance r from centers of con-
tributing spherulites and at distances s, and s, from
the sample borders, both per unit surface area), in-
volve sums of the partial functions representing dif-

TABLE I
Component Functions for the Probabilistic Description of Interspherulitic Lines between Spherulites with Differently
Positioned Centers, as indicated in Fig. 1.

Relation among 7, s;, Positions of spherulite

and s, centers Function
r<s; 00 u, =8 7 D*r?
S, > 1> s, 00 U, =8D*7[m—a— (-2 Y
AB U, =2 D?r(r* — s3)71/2
AO, BO Uy, =8D D, 1> —s) Y2 (r +5))
=5 (O + Oy (O, + Oy Uy, = 8D r{(m — a = B)r —(r* — s> = (1 = s9)'/2 + 2[(r — 5))(r — 5,)]"/%}
AB, CD U, =2D2r [(1* — s3) V2 + (r* —s)71/7]

A (O + Oy, B(O; + 0O,
C(O; + Oy), DO, + O,
AC, AD, BD, BC

Uy =8D Dy r(P — s9) V2 {r + s, — [(r — s)(r + s)]"/?)
U, = 8D D, r(r* — s3) /2 {r + s,—[(r +s)(r — 57)]'/?}
Us; =4 D§ r[(r — s)(r — 52)]_1/2

Note. (O, + O,) denotes that a spherulite center is located either in the O, or in the O, part of the ring. Function U, is from

Ref.[20].
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TABLE 1I
Component Functions for the Probabilistic Description of Triple Points between Spherulites with Differently
Positioned Centers, as indicated in Fig. 1

Relation among 7, s;, and s, Positions of spherulite centers

Function

r<s, 000
Sy >1>5 000
ABO
AOO,BOO
r>s, (01 + O)(0; + O)(O; + Oy)

AB(O, + O,)

CD(O, + 0,)

AO,0,, BO,0,, CO,0,,
DO,0,

AO,(O, + 0,), BO,(O, + O,)

CO,(O, + 0,), DO,(O, + O,)

AC(O; + O,), BD(O; + Oy)

AD(O; + O,), BC(O; + Oy)

ABC, ABD, ACD, CBD

V, =47 D%

V, = 4D% [F(m — a)* =2(r* — §%) — s,(m — ) (r* — s3)1/?]

V,=4D?Dr[(m— a)s, (r? —s3) /2 + 1]

Vy=4D,D?r[(m — a)(r® — s3)"/2(1* + 25%) + 3s,]

V, = 4D {(m — a — B)*> —=0.5(7 — a — B) [sin(Ra) +
sin(2B)] + +cos(2a) + cos(2B) + 2[cos(a — B) — cos(a + B)
- 11}

V, =4D?D [(m — a — B) cos a + sina — sinB] r* (¥ — s3) " 1/2

V, =4D?D [(m — a — B) cos B — sin a + sinB] r?(1* — s3) " 1/2

V,=4D,D*P[(m — a— B) — 1.5sin(a + B) — 0.5(7 — a —
B) cos(a + PII(* — 1) 2 + (1 — 53) 717

Vs=2D,D?r (1 — %) Y2 {(m — a — B)[4cos’a + cos(a +
B)] + 4sin(a — B) — sin(2B) + 3sin(2a) — sin(a + B)}

Ve =2D,D?1° (1> — 32 {(m — a — B)[4cos®B + cos(a +
B)]+ 4 sin(B — «) +3sin(2B) — sin 2a) — sin(a + B)}

V, = 4D?D r*[(* — $3)(r* — s3)]" /2 cos[(a + B)/2] {2cos[(a +
B)/2] — cos[(a — B)/2] (cosa + cosP) +sin [(B — a)/2]
(sina — sinp)}

Vg = 4D? D [(1? — $3)(r* — s%)]”/?cos[(B — «)/2] {cos[(3B +
«)/2] +cos[(B + 3a)/2]+2cos [(B — a)/2}

Vy = 16D 12 [(r* — s2) (* — s2)] /2 cos[(a +B)/2] cos [(a —
B)/2]

Note. (O; + O,) denotes that a spherulite center is located either in the O, or in the O, part of the ring. Function V; is from

Ref. [20].

ferent combinations of spherulite positions, listed in
Tables I and 1L

For r<s;: F,dr = U, exp( — E)dr (6a)
Fydr = V, exp( — E)dr (6b)

For s,>r>s;:

F,dr = (U, + U, + U;) exp( — E)dr (6¢0)

Fydr = (V; + V, + Vi) exp( — E)dr  (6d)

For r>s,:
F,dr = (U; +.... + Us) exp( — E)dr (6e)
Fodr = (V, + .. ... + Vo) exp( — E)dr (6f)

The appropriate selection of the functions V; and U;
enables us to differentiate boundaries formed between
spherulites nucleated inside the sample, between
spherulites nucleated at borders, and between these
two populations of spherulites.

The distribution of distances from spherulites cen-
ters to the boundary lines between these spherulites,
R5(7,51,5,), and the distribution of distances from the

spherulite centers to the triple boundary points
formed by these spherulites, R5(,5,,5,), are obtained
by multiplication of the functions F, and F; by the
number of the spherulites participating in the forma-
tion of the respective structure element:

RZ(rrshSZ)dr = 2F2(I',Sl,52)dr
and Rj(r,sy,8,)dr = 3F;5(r,sy,8,)dr  (7)

In the case of instantaneous nucleation the distance
from spherulite center to the boundary of this spheru-
lite, r, always equals " G(u)du, where t denotes the
time of boundary formation and G(u) is the time-
dependent growth rate. Hence, substituting this inte-
gral for » and G(t)dt for dr in Eqs.(6a) and (6b) one
obtains the rate of interspherulitic lines formation
H,(t,5,,5,), and the rate of triple points formation,
Hj(t,51,5,), in unit area of the film at distances s; and s,
from the sample boundaries. For the isothermal crys-
tallization with G = const. they are

H,(t,51,5,)dt = Fy(Gt,s1,8,)Gdt
and H3(t,81,52)dt = F3(Gt,sl,SZ)Gdt (8)

To obtain the average rates of boundary formation
and the distance distributions from centers to bound-
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aries in the entire strip, one must perform integration
over the range 0 < s;< h and divide the result by h:

h
Hav(t,Zh) = hlj H(t,sl,zh - Sl)dsl
0

h
and R,.(r,2h) = h’lj R(r,s;,2h — s;)ds; (9)
0

The boundary length, L,, and the number of bound-
ary points, L;, formed until time ¢ are obtained by the
respective integration,

t h
L.(t,2h) =h! f f H,(t',s;,2h—s;)ds; dt’
0 0

forn=2andn =3 (10)

The length of interspherulitic lines and the number
of triple boundary points per unit area of a sample
after a completion of crystallization are equal to
L,(%,2h) and L;(,2h), respectively.

To demonstrate the influence of the nucleation at
borders of thin film on the development of the spheru-
litic pattern, the rates and the progression of bound-
aries formation and distribution of length and number
of interspherulitic boundaries across the sample were
calculated for samples of various width, according to
formulas derived in this section. The following data
were used: G = 5 unit/min and D = 6.25 X 107*
unit 2, which corresponds to an average spherulite
radius in infinite sample about 22 units. To represent
a weak and intense nucleation at borders two values
of nucleation density were selected: Dy = 0.025 unit !
and D, = 0.5 unit™!. Also, calculations for cases where
nucleation inside the sample was absent (D = 0) were
conducted to test the elaborated approach.

The conversion degree for both infinite and finite
samples were also calculated taking advantage of the
formulae derived in Refs. 8, 9, 16-19.

COMPUTER SIMULATION

Computer simulation is a way to verify such an ap-
proach, provided that it accounts for the same basic
assumptions.

The 2D version of previously developed soft-
ware”>* was used to reproduce polymer spherulitic
crystallization, that is, nucleation and growth of circu-
lar entities. The sample was assumed to be a rectangle
of finite width, 2k, and length, L. The instantaneous
nucleation is represented by nuclei whose density is D
per area unit and D, per unit of border line length. The
location of nuclei is chosen at random, using the ran-
dom number generator of the computer. Growth be-
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gins immediately after nucleation and the constant
growth rate is equal for all entities. Two coordinates
and time of appearance of any possible triple points
are simply deduced from the locations and the times
of nucleation of spherulites. From all possible triple
points real ones are those that appear in a still liquid
zone, i.e., outside of all other spherulites. Then,
boundaries are calculated accounting for the following
considerations.

1. Two spherulites must be close enough to develop
a boundary and the first possible boundary point is
located on the same straight line as the two spherulite
centers. If the point is located in a sample fraction
already occupied by another spherulite, then the first
point of the boundary to be considered is the closest
triple point involving both considered spherulites.

2. The boundary line can develop in two directions
apart from the first contact point; hence, the coordi-
nates of successive points are calculated discretising
time from the moment of appearance of the first con-
tact point to the current time or to the moment when
the considered boundary reaches the closest triple
point involving both considered spherulites or the
boundary of the sample or a liquid zone (defining here
the “last boundary point”).

3. In the case of incomplete crystallization, circular
boundary solid-liquid exists between given last
boundary points unless these boundaries intercept the
specimen borders.

Applying the above-described procedure, it is pos-
sible to calculate at the same time the location of triple
points and points along boundary lines. The surface of
all entities, the number of triple points, and the length
of all boundary lines are then calculated. The acquired
data are plotted, which enables visualization of the
emerging spherulitic patterns.

In computer simulation the crystallization kinetics
of fictitious sample varies from one calculation to an-
other. As defined during preliminary works, at least
500 runs of simulations for each set of parameters are
performed to obtain average results. Additionally, to
make our result as representative as possible the fic-
titious sample is sufficiently long to contain at least
100 spherulites.

EXPERIMENTAL

Ten-micrometer-thick films of isotactic polypropylene
(iPP), Malen F401 (having MFI of 3.0 g/10 min (230°C,
2.16 kg), M,, = 3.0 X 10° g/mol, M,,/M,, = 5.3, man-
ufactured by Orlen SA, Poland) were prepared by
compression molding at 190°C and quenched to room
temperature. To produce the spherulitic structure in
strips of film with intense nucleation at borders, a
water suspension of nucleating agent was deposited
on iPP film surfaces, leaving only a strip of a finite
width uncovered; this procedure was performed un-
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Figure 3 Microphotographs of fragments of iPP films: A,
wide film; B, 290-um-wide strip of film; C, 150-um-wide
strip of film. Strips in B and C are nucleated at sample
borders by a strong nucleating agent.

der a magnifying lens. After being dried, the films,
with free upper surface, were heated to 220°C, cooled
to crystallization temperature of 133°C, and isother-
mally crystallized in Linkam Hot Stage mounted on a
polarized light microscope. The entire procedure was
carried out under a flow of pure dry nitrogen. Films
without nucleating agent were also crystallized in the
same way for comparison.

RESULTS

Figure 3 shows light micrographs of a fragment of a
wide iPP film and narrow strips of iPP film, having
width of 290 and 150 um between the areas covered
with nucleating agent. Straight interspherulitic
boundaries in a wide film indicate that most spheru-
lites were nucleated at the same time. At the edges of
narrow strips a very intense spherulite nucleation
caused the crystallization in the form of transcrystal-
line layers. The width of the narrower (150 wm) strip is

2325

0 40 800 40 80

Figure 4 Fragments of computer-simulated thin polymer
films having the width of 80 units with the intense slpherulite
nucleation at sample borders of density 0.5 unit "~ (A) and
with the weak spherulite nucleation at borders of density
0.025 unit ™! (B).

less than the diameter of an average spherulite in the
wide sample, which is about 220 um. The wider strip
contains a significant amount of spherulites nucleated
inside the polymer, as shown in Figure 3, while the
narrower strip is nearly filled with trancrystalline lay-
ers nucleated at the edges. The spherulites nucleated
inside the strip are seldom visible. The change of

-

=

0 40

0

C
0 4

0

Figure 5 Fragments of computer-simulated thin polymer
films having the width of 40 units with the intense spherulite
nucleation at sample borders of density 0.5 unit ' (A), with
the weak spherulite nucleation at borders having density
0.025 unit™" (B) and with no spherulite nucleation at the
borders (C).
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FRACTION

0.25
finite width 40
0.00 ,
0 2 4 & 8
TIME (min)
Figure 6 Conversion degree (1) and the progression of

boundary lines (2) and triple points (3) formation against
time in finite sample 40 units wide with intense (dot-dash
lines) and weak (continuous lines) spherulite nucleation at
borders, without spherulite nucleation inside the sample.
Lines are based on the probabilistic description while sym-
bols denote the results of computer simulation.

volume due to crystallization caused the thinning of
films around triple points. In the narrower as well as
in the wider strip the thinning of the film and weak-
ening of the boundaries between spherulites nucleated
on opposite edges of the strip resulted in fracture of
the polymer along the spherulite boundaries.

In Figures 4 and 5 the computer-simulated spheru-
litic patterns are shown in strips of different width and
different nucleation density at borders. The width of
the sample shown in Figure 5(a), with intense nucle-
ation at borders, is close to the average spherulite
diameter in an infinite sample, while the width of the
sample shown in Figure 4 is twice as large. The com-
puter-simulated spherulitic patterns visible in Figures
4a and 5a, with strong nucleation at sample borders,
correspond qualitatively to those visible in Figure 3(b)
and (c).

Thus, we conclude that the computer simulation
allows us to reproduce the spherulitic patterns in nar-
row strips in a correct way and it is further used to
verify the probabilistic description of the crystalliza-
tion in narrow strips with additional nucleation at the
edges of the sample.

Based on Egs. (6-10) it is expected that the sample
width and spherulite nucleation density inside a poly-
mer and at sample borders control the spherulitic
crystallization. Thus, all three factors were varied to
estimate their effect on the formation of spherulitic
pattern and its final form.

First we compared the predictions of the probabi-
listic description with the results of computer simula-
tion for 40 arbitrary unit wide samples involving the
spherulite nucleation only at the borders. This allowed
us to exclude from the considerations all functions in
Tables I and II containing the nucleation density inside
a polymer, D.

Figure 6 shows the progression of the formation of
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triple points, interspherulitic boundary lines, and also
the conversion degree of melt into spherulites in those
samples. A very good agreement between results ob-
tained by computer simulation and based on the prob-
abilistic description was achieved. For the sample with
very dense nucleation on edges, with density of 0.5
per unit, the conversion degree is nearly a linear func-
tion of time, because the transcrystalline fronts, similar
to those visible in Figure 3(c) and 3(d), grow from the
sample edges until impingement, abruptly ending the
crystallization. The straight line boundaries between
those densely nucleated spherulites also progress lin-
early with time. They are very numerous; thus, the
boundary between two fronts formed at the end of
crystallization is only a minor fraction of the total
boundary length. All triple points are formed sud-
denly when the two transcrystalline fronts impinge.

The transcrystalline joint front is formed before it is
truncated by other spherulites. Thus, sufficient de-
crease of sample width hinders a development of tran-
scrystalline morphology even in the absence of
spherulite nucleation inside the sample. The decrease
of nucleation density to 0.025 per unit increases the
distance between the nuclei at edges which, on aver-
age, equals the sample width. The conversion of melt
into spherulites and the formation of the boundaries,
depicted in Figure 6, are slower. The progression of
the formation of interspherulitic lines changes rapidly
when spherulites nucleated at opposite borders come
in contact, but still proceeds because the crystalliza-
tion does not end. All triple points are formed after
this moment, but not so rapidly as in the case of dense
nucleation.

Further, spherulite nucleation inside a polymer is
accounted for. While the constant nucleation density
inside a polymer is assumed, the sample width and
nucleation density at sample borders are varied to
estimate their influence on spherulitic crystallization
and morphology.

Figure 7 shows the progression of the formation of
triple points and interspherulitic lines and also the
conversion degree of melt into spherulites in samples
having width of 40 and 20 units, with spherulite nu-
cleation inside, having density of D = 6.25 X 10~ *
unit” % Fragments of computer simulated samples, 40
units wide, are shown in Figure 5 together with the
fragment of the simulated sample without any nucle-
ation at edges, plotted for comparison.

Figure 8 shows the time dependence of conversion
degree and the progression of formation of boundaries
in 80 unit wide samples, with weak and dense nucle-
ation on borders, shown in Figure 4, and also in infi-
nite film. Again, very good agreement was reached
between the results based on the probabilistic descrip-
tion and obtained by means of computer simulation.

The conversion degree and the progression of the
formation of boundaries in a 40 unit wide sample with
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Figure 7 Conversion degree (1) and the progression of
boundary lines (2) and triple points (3) formation against
time in finite samples with spherulite nucleation inside,
having width of 40 units (A) and 20 units (B), with intense
spherulite nucleation (dot-dash lines), with weak spherulite
nucleation (continuous lines), and without nucleation on
borders (dashed lines); the latter is from Ref. 20 Lines are
based on the probabilistic description while symbols denote
results of computer simulation.

spherulite nucleation inside does not differ much from
those for the sample without such nucleation if the
nucleation at the borders is intense. However, about
half of the triple points are formed before the tran-
scrystalline fronts meet in the central part of the strip,
due to impingement of those fronts with spherulites
nucleated inside the strip. When nucleation at the
borders is weak the spherulites nucleated inside the
strip play a more significant role, accelerating both the
conversion of melt into spherulites and the formation
of interspherulitic boundaries. The decrease of the
sample width to 20 units, which is about the average
spherulite radius in an infinite sample, reduces the
role of spherulites nucleated inside the strip; hence,
the respective dependencies become more similar to
those shown in Figure 6, except that all phenomena
related to the impingement of spherulites nucleated
on opposite borders occur earlier. The nucleation at
borders accelerates both the conversion of melt into
spherulites and the formation of boundaries compared
with that in narrow strips without such nucleation and
also in an infinite film with the same nucleation intensity
inside the polymer. In the 80 unit wide sample with
nucleation at borders the conversion of melt into spheru-
lites and the formation of boundaries are still faster than
in an infinite film but the acceleration is not so pro-
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Figure 8 Conversion degree (1), the progression of bound-
ary lines (2), and triple points (3) formation against time in
samples with spherulite nucleation inside: (A) infinite width,
data from Ref. 20 and (B) width of 80 units, with intense
spherulite nucleation (dot-dash lines) and with weak spheru-
lite nucleation (continuous lines) at sample borders.

nounced as in the case of narrower samples. The differ-
ence in the formation of structure caused by the change
in the nucleation density at borders is also reduced.
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Figure9 Distributions of length of interspherulitic boundary
lines and number of triple points in unit area of film against the
distance from the sample border. Numbers denote the width of
finite samples expressed in arbitrary units. Symbols w and i
denote weak and intense nucleation at sample borders.
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Figure 10 Rates of formation of boundary lines and triple

points between spherulites in finite and infinite samples
(dotted lines). Numbers denote the width of finite samples
expressed in arbitrary units. Symbols w and i denote weak
and intense nucleation at sample borders.

Not only does the progression of the formation of
interspherulitic boundaries change due to spherulite
nucleation at borders, but also the final length of
boundary lines and number of triple points, which is
clearly seen in Figures 4 and 5. The profiles of final
length of lines and number of triple points per unit
area are plotted in Figure 9 for samples of various
width with intense and weak nucleation at the bor-
ders. In films without such nucleation the areas adja-
cent to the borders contain fewer interspherulite
boundaries than the sample interior.”” The nucleation
at the borders increases the local length of lines and
the number of triple points. In sufficiently wide strips
of film the number of boundaries in a distance from a
border of about 2-3 average spherulite radii achieves
the level typical for an infinite film. In narrower strips
it increases rapidly in the central zones, due to in-
creased probability of impingement of spherulites nu-
cleated on opposing borders. The effect is enhanced by
intense nucleation at sample borders. As this increase
is very local, the fraction of such boundaries may not
contribute significantly to the average amount of
boundaries per unit area. This contribution depends
on the relation between the sample width and the
nucleation density at the borders, that is, on the aver-
age distance between the centers of spherulites nucle-
ated there. In the case of a weak nucleation at the
borders the abrupt increase in length of the lines and
the number of triple points per unit area in the middle
of the sample has a maximum for a certain sample
width, as shown in Figure 9.
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A final spherulitic pattern can be described quanti-
tatively by distributions of distances from spherulite
centers to interspherulitic boundaries. In Figure 10 the
rates of the formation of interspherulitic boundaries in
40 and 20 unit wide strips of films are plotted, together
with respective curves for infinite films. The recalcu-
lation of the dependencies shown in Figure 10 accord-
ing to Eq. (7) allows us to obtain easily the distribu-
tions of distances from spherulite centers to bound-
aries formed by these spherulites. Spherulite
nucleation at the borders of narrow strips causes the
fast formation of numerous boundaries between
spherulites. This is reflected in the distance distribu-
tions from spherulite centers to the boundaries, which
differ from those for an infinite film. In narrow strips
of films having width equal or less than the average
spherulite diameter in an infinite film the distributions
exhibit pronounced peaks for distances equal to half of
the strip width, which is caused by impingement of
spherulites nucleated at opposite borders of the sam-
ples.

DISCUSSION AND CONCLUSIONS

In this paper the changes of isothermally crystallized
two-dimensional spherulitic structure due to the pres-
ence of spherulite nucleation at sample borders were
evaluated by means of computer simulation and prob-
abilistic description. The results obtained indicate
clearly that even a relatively weak nucleation on bor-
ders influences the spherulitic structure. The regions
adjacent to the polymer borders, within a distance
comparable to the average spherulite diameter, differ
considerably from the polymer interior. The process of
the formation of triple points and of interspherulitic
boundary lines is faster due to the spherulite nucle-
ation at borders. There is no direct relation between
the kinetics of the formation and the final form of the
spherulitic structure in narrow strips of polymer and
in wide films.

Although the results obtained on the basis of the
probabilistic description and computer simulation de-
scribed in this paper concern instantaneous nucle-
ation, the model can be also applied to nucleation
prolonged in time. The general formulas are valid for
the isothermal as well the nonisothermal processes. It
is also possible to distinguish between the inter-
spherulitic boundaries formed either within or be-
tween the populations of spherulites nucleated inside
the polymer and at material borders. In the case of
nucleation at borders so dense that the boundaries
within transcrystalline layers are no longer distin-
guishable, such boundaries can be easily excluded
from the considerations.

Here only two-dimensional spherulitic crystalliza-
tion was studied; however, one can expect similar
tendencies in changes of spherulitic structure forma-
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tion and in its final form due to spatial limits of a
polymer in three dimensions as well. Although the
description of the formation of boundaries in three-
dimensional polymer portions with one finite dimen-
sion is not possible so far, nevertheless both the prob-
abilistic description and the computer simulation
methods described here have a potential ability to deal
with this problem. Since the probabilistic approach
can deal with any localization of nucleation sites, there
is a possibility of extending the presented treatment to
fiber-reinforced composites, where spherulite nucle-
ation on fibers is frequent. The two-dimensional
spherulitic patterns described analytically and com-
puter simulated in this paper are similar to those
emerging in thin films of fiber-reinforced composites,
either observed experimentally®’ or computer simu-
lated.**

For the two-dimensional case numerous partial
functions describing the boundaries between spheru-
lites nucleated at various localizations resulted from
the number of possible localizations for centers of
spherulites forming the boundary. In bulk, a spherical
cap around the boundary point, which must be con-
sidered instead of the ring, will not split into two
separate fragments by truncation at the sample bor-
ders as it does the ring. At each sample border only
one circle instead of two sections will be considered.
This greatly simplifies the future application of the
elaborated approach to bulk crystallization.

Thin polymer films, being in fact confined por-
tions of a material, are frequently used to study the
spherulitic structure of a polymer. Those confined
portions can differ significantly from a bulk mate-
rial. While the intense spherulitic nucleation at sam-
ple borders is easily recognizable by microscopic
methods and can be taken into account, the weak
nucleation, resulting in less obvious changes, also
affects the kinetics of the structure formation and
the spherulitic pattern.
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